
EE278 Statistical Signal Processing Stanford, Autumn 2023

Homework 8

Due: Thursday, December 7, 2023, 1:00 pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For
the programming/simulation questions you can use any reasonable programming language.
Comment your source code and include the code and a brief overall explanation with your
answers.

1. (10 pts) Consider the n-dimensional multi-sensor estimation problem:

Y = hX +W, X ∼ N (0, σ2
x),W ∼ N (0, σ2

wI),

and X and W are independent.

a) (3 pts) Derive the MMSE estimator of X given Y using the general formula you
derived for Q. 1 in HW 7 Is the relevant matrix invertible? Comment on the
computational effort of directly implementing this estimator for n large.

b) (3 pts) Derive an estimator of X by first projecting Y along h to obtain V and
then compute the MMSE estimate of X given V . Comment on the computational
effort of implementing this estimator for n large.

c) (4 pts) Show that the estimators in (a) and (b) are identical. (Hint: let gT be the
row vector KXY K

−1
Y and multiply it by KY to solve for g.)

2. (10 pts) Consider the dynamical system discussed in class

X0 ∼ N (0, σ2
0)

Xn = αXn−1 +Wn−1 n = 1, 2, . . .

Yn = Xn + Zn, n = 0, 1, 2 . . .

with theWn’s i.i.d. N (0, σ2
w) random variables and Zn’s i.i.d. N (0, σ2

z) random variables,
all independent of each other and independent of X0. We focus on the case α = 1 and
σ2
w = 0.

a) (5 pts) Compute the MMSE estimate of Xn given Yn = [Y0, . . . , Yn]
T using the

result of the previous problem.

b) (5 pts) Check that the Kalman filter recursion gives the same answer.

3. (12 pts) Consider the same dynamical system as in Q. 2:

X0 ∼ N (0, σ2
0)

Xn = αXn−1 +Wn−1 n = 1, 2, . . .

Yn = Xn + Zn, n = 0, 1, 2 . . .
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with theWn’s i.i.d. N (0, σ2
w) random variables and Zn’s i.i.d. N (0, σ2

z) random variables,
all independent of each other and independent of X0. In this question, we will focus on
the case 0 < α < 1

a) (6 pts) Let σ2
n be the variance of Xn. Show that σ2

n increases or decreases monoton-
ically to a limit σ2

∞ as n → ∞ and identify the limit. Hence, show that Xn and Yn
both converge to steady-state distributions as n → ∞ and identify the steady-state
distributions. (Hint: find a relationship between σ2

n − σ2
n−1 and σ2

n+1 − σ2
n.)

b) (6 pts) Fix σ2
0 = σ2

z = σ2
∞ = 1. Consider 4 possible values for α: α = 0.1, 0.5, 0.9, 0.99.

For each of these values, simulate the system and plot a realization of {Xn} and a
realization of {Yn} on the same plot. Explain how the plot qualitatively changes as
α varies.

4. (18 pts) We apply the Kalman filter to generate estimates X̂n’s to track the dynamical
system in Q. 3. Let v2n be the MMSE error in estimating Xn. We will continue to assume
0 < α < 1.

a) (3 pts) Show that v2n < σ2
n. (Hint: no calculations are needed.)

b) (3 pts) Show that v2n is monotonic in n. (Hint: use the same technique as in Q.
2(a).)

c) (3 pts) Using (a) and (b) or otherwise, show that v2n converges to a limit. Compute
the limit v2∞.

d) (3 pts) Compute the MMSE estimate X̃n of Xn based on Yn only, and compute
the resulting MMSE error. Compute the limit e2∞ of this error as n → ∞.

e) (3 pts) Fix σ2
0 = σ2

z = σ2
∞ = 1. Plot both v2∞ and e2∞ as a function of α between

0 and 1. For which value of α is the gain from using the entire past history of the
observations rather than just the current observation greatest? For what value of
α is the gain smallest?

f) (3 pts) Fix σ2
0 = σ2

z = σ2
∞ = 1. Consider 4 possible values for α: α = 0.1, 0.5, 0.9, 0.99.

For each of these values, simulate the system and plot the resulting trajectories of
{Xn}, {X̂n} and {X̃n} and on the same plot. Explain how the plot qualitatively
changes as α varies.
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